Закон ома для однородного и неоднородного участка цепи для полной цепи

Физика — ответы на экзамен 1-29 / Закон Ома для однородного и неоднородного участка цепи

Дифференциальная форма закона Ома. Найдем связь между плотностью тока j и напряженностью поля Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е. Поэтому направления векторов j и Е совпадают. Рассмотрим в однородной изотропной среде элементарный объем с образующими, параллельными вектору Е, длиной , ограниченной двумя эквипотенциальными сечениями 1 и 2 (рис. 4.3).

Обозначим их потенциалы и, а среднюю площадь сечения через. Используя закон Ома, получим для тока, или для плотности тока, следовательно

.

Перейдем к пределу при , тогда рассматриваемый объем можно считать цилиндрическим, а поле внутри него однородным, так что

,

где Е — напряженность электрического поля внутри проводника. Учитывая, что j и Есовпадают по направлению, получаем

.

Это соотношение является дифференциальной формой закона Ома для однородного участка цепи. Величина называется удельной проводимостью. На неоднородном участке цепи на носители тока действуют, кроме электростатических сил , еще и сторонние силы, следовательно, плотность тока в этих участках оказывается пропорциональной сумме напряженностей. Учет этого приводит кдифференциальной форме закон Ома для неоднородного участка цепи.

.

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка Δφ=φ1−φ2=AKq, где AK — работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, Aelq=φ1−φ2, где q — положительный заряд, который перемещается между любыми двумя точками цепи; φ1−φ2 — разность потенциалов точек в начале и конце рассматриваемого участка; Astq=ε. Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то U=φ1−φ2. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

где R — общее сопротивление неоднородного участка.

ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε < 0.

Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома

Закон Ома для однородного участка цепи:

Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.

Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.

Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет

абсолютной температуре p = α*p0*T, p0 – удельное сопротивление при 0 о С, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К -1 . p = p0*(1+ α*t), t – температура в о С.

Согласно классической электронной теории металлов в металлахс идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).

Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:

p(T) = pост + pид., pост – остаточное удельное сопротивление, pид.— идеальное сопротивление металла.

Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. pост . Иногда ля некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.

j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.

Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).

От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:

1. В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.

2. j, E и Е* в каждой точке направлены по касательной к контуру.

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).

I вдоль контура равна проекции плотности тока на площадь: I=jS (3).

Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ12), ∫E*edl= ε12, IR= ε12+(φ12). ε12, как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε12>0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε12

Закон ома для однородного и неоднородного участка цепи для полной цепи

Смотрите так же:

  • Учет возврата от покупателей в 1с Учет возврата от покупателей в 1с Вопрос: Как отразить возврат товаров от покупателя в "1С:Бухгалтерии 8" (ред. 3.0)? Дата публикации 27.06.2016 Использован релиз 3.0.43 Возврат не принятого на учет товара Возврат […]
  • Заверенную как пишется Заверенную как пишется РАЗНО́СНЫЙ, -ая, -ое. 1. Предназначенный, служащий для регистрации разносимых писем, документов. Разносная книга. Предложения со словом «разносный»: Правда, объективности ради следует отметить, […]
  • Закон ома Сопротивление удельное сопротивление проводников Закон Ома, сопротивление проводников Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние […]
  • 1с возврат аванса от поставщика 1с возврат аванса от поставщика Вопрос: Как отразить возврат аванса, полученного от покупателя, в "1С:Бухгалтерии 8" (ред. 3.0)? Дата публикации 31.10.2017 Использован релиз 3.0.53 Получение аванса Вычет НДС при […]
  • 1 Состав конституционного суда рф 1 Состав конституционного суда рф Конституционный Суд Российской Федерации состоит из 19 судей. Судьи Конституционного Суда, согласно Конституции Российской Федерации, назначаются на должность Советом Федерации по […]
  • Взаимная претензия Взаимная претензия Разные взгляды на будущее отношений, взаимные претензии могут привести к тому, что искренние когда-то чувства заметно потускнеют. Полагаю: взаимные претензии необходимо полностью исключить. В итоге […]

1.8. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12, действующей на данном участке. Поэтому полная работа равна

Величину U 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи ( cd ) является однородным.

Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома

Закон Ома для однородного участка цепи:

Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.

Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.

Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет

абсолютной температуре p = α*p0*T, p0 – удельное сопротивление при 0 о С, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К -1 . p = p0*(1+ α*t), t – температура в о С.

Согласно классической электронной теории металлов в металлах с идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).

Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:

p(T) = pост + pид., pост – остаточное удельное сопротивление, pид.— идеальное сопротивление металла.

Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. pост . Иногда для некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.

j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.

Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).

От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:

1. В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.

2. j, E и Е* в каждой точке направлены по касательной к контуру.

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).

I вдоль контура равна проекции плотности тока на площадь: I=jS (3).

Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ12), ∫E*edl= ε12, IR= ε12+(φ12). ε12, как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε12>0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε12 2 Rτ – это уравнение было установлено экспериментально Джоулем и независимо от него Ленцем и носит название закона Джоуля-Ленца в интегральной форме. Полученная формула позволяет определить тепло во всем проводнике.

Закон Ома для неоднородного участка цепи

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи — Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.

Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

— где φ1 и φ 2 – потенциалы на концах участка.

ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: — где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

Тогда закон Ома примет вид:

ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

  • ε = 20 В
  • r = 1 Ом
  • φ1 = 15 В
  • φ2 = 5 В
  • R = 3 Ом
  • I – ?
  • Запишем закон Ома для неоднородного участка цепи —
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А

Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

Опубликовано / Февраль 6, 2018
Рубрики:
Блог